Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty

نویسندگان

  • Nazila Aghayi
  • Madjid Tavana
  • Mohammad Ali Raayatpanah
چکیده

The conventional paradigm in data envelopment analysis (DEA) is to develop an efficiency measurement model that assumes the input and output data are precise and equal to some nominal values. However, this paradigm does not take into consideration the inherent uncertainties in real-life performance measurement problems. As a result of these uncertainties, the input and output data may take non-nominal values and violate the basic assumptions in DEA. This phenomenon has motivated us to design a DEA model that is ‘robust’ and immune to uncertain data. We present a robust DEA model with a common set of weights (CSWs) under varying degrees of conservatism and data uncertainty. We use goal programming (GP) and compute the relative efficiencies of the decision making units (DMUs) by producing CSWs in one run. The proposed model uses a confidence criterion to produce a ranking of the DMUs and determine a set of efficient DMUs. We present a numerical example and a case study to exhibit the efficacy of the procedures and to demonstrate the applicability of the proposed method to a performance measurement problem in the banking industry. [Received 13 December 2014; Revised 13 August 2015; Accepted 19 January 2016] 386 N. Aghayi et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing a Robust Model of Interval Data Envelopment Analysis to Performance Measurement under Double Uncertainty Situations

It is very necessary to consider the uncertainty in the data and how to deal with it when performance measurement using data envelopment analysis. Because a little deviation in the data can lead to a significant change in the performance results. However, in the real world and in many cases, the data is uncertain. Interval data envelopment analysis is one of the most widely used approaches to d...

متن کامل

A New Robust Bootstrap Algorithm for the Assessment of Common Set of Weights in Performance Analysis

The performance of the units is defined as the ratio of the weighted sum of outputs to the weighted sum of inputs. These weights can be determined by data envelopment analysis (DEA) models. The inputs and outputs of the related (Decision Making Unit) DMU are assessed by a set of the weights obtained via DEA for each DMU. In addition, the weights are not generally common, but rather, they are ve...

متن کامل

Deriving Common Set of Weights in the Presence of the Undesirable Inputs: A DEA based Approach

Data Envelopment Analysis (DEA) as a non-parametric method for efficiency measurement allows decision making units (DMUs) to select the most advantageous weight factors in order to maximize their efficiency scores.  In most practical applications of DEA presented in the literature, the presented models assume that all inputs are fully desirable. However, in many real situations undesirable inpu...

متن کامل

The Most Revenue Efficiency with Price Uncertainty

    In this paper, a new revenue efficiency data envelopment analysis (RE-DEA) approach is considered for finding the most revenue efficient unit with price uncertainty in both optimistic and pessimistic perspectives. The optimistic and pessimistic perspectives use efficient frontier and inefficient frontier, respectively. An integrated model is introduced to find decision making units (DMUs) t...

متن کامل

Stock Evaluation under Mixed Uncertainties Using Robust DEA Model

Data Envelopment Analysis (DEA) is one of the popular and applicable techniques for assessing and ranking the stocks or other financial assets. It should be noted that in the financial markets, most of the times, the inputs and outputs of DEA models are accompanied by uncertainty. Accordingly, in this paper, a novel Robust Data Envelopment Analysis (RDEA) model, which is capable to be used in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016